All of recorded human history—at only a few thousand years, a mere eyeblink in geologic time—has played out in perhaps the most stable climate window of the past 650,000 years. We have been shielded from the climate’s violence by our short civilizational memory, and our remarkably good fortune. But humanity’s ongoing chemistry experiment on our planet could push the climate well beyond those slim historical parameters, into a state it hasn’t seen in tens of millions of years, a world for which Homo sapiens
Source: Could Climate Change Be More Extreme Than We Think? – The Atlantic
Our climate models could be missing something big.
- Story by Peter Brannen
- MARCH 2021 ISSUEPLANET
A new guide to living through climate change. Robinson Meyer brings you the biggest ideas and most vital information to help you flourish on a changing planet.
Photo Illustrations by Brendan Pattengale | Maps by La Tigre
Images above: Glaciers from the Vatnajökull ice cap, in Iceland
Brendan Pattengale is a photographer who explores how color can convey emotions in an image. In his photo illustrations throughout this article, the colors of the original photos have been adjusted, but the images are otherwise unaltered.
This article was published online on February 3, 2021.
Updated at 1:53 p.m. ET on February 11, 2021.
We live on a wild planet, a wobbly, erupting, ocean-sloshed orb that careens around a giant thermonuclear explosion in the void. Big rocks whiz by overhead, and here on the Earth’s surface, whole continents crash together, rip apart, and occasionally turn inside out, killing nearly everything. Our planet is fickle. When the unseen tug of celestial bodies points Earth toward a new North Star, for instance, the shift in sunlight can dry up the Sahara, or fill it with hippopotamuses. Of more immediate interest today, a variation in the composition of the Earth’s atmosphere of as little as 0.1 percent has meant the difference between sweltering Arctic rainforests and a half mile of ice atop Boston. That negligible wisp of the air is carbon dioxide.
Since about the time of the American Civil War, CO2’s crucial role in warming the planet has been well understood. And not just based on mathematical models: The planet has run many experiments with different levels of atmospheric CO2. At some points in the Earth’s history, lots of CO2 has vented from the crust and leaped from the seas, and the planet has gotten warm. At others, lots of CO2 has been hidden away in the rocks and in the ocean’s depths, and the planet has gotten cold. The sea level, meanwhile, has tried to keep up—rising and falling over the ages, with coastlines racing out across the continental shelf, only to be drawn back in again. During the entire half-billion-year Phanerozoic eon of animal life, CO2 has been the primary driver of the Earth’s climate. And sometimes, when the planet has issued a truly titanic slug of CO2 into the atmosphere, things have gone horribly wrong.
Today, atmospheric CO2 sits at 410 parts per million, a higher level than at any point in more than 3 million years. And humans are injecting more CO2 into the atmosphere at one of the fastest rates ever. When hucksters tell you that the climate is always changing, they’re right, but that’s not the good news they think it is. “The climate system is an angry beast,” the late Columbia climate scientist Wally Broecker was fond of saying, “and we are poking it with sticks.”
The beast has only just begun to snarl. All of recorded human history—at only a few thousand years, a mere eyeblink in geologic time—has played out in perhaps the most stable climate window of the past 650,000 years. We have been shielded from the climate’s violence by our short civilizational memory, and our remarkably good fortune. But humanity’s ongoing chemistry experiment on our planet could push the climate well beyond those slim historical parameters, into a state it hasn’t seen in tens of millions of years, a world for which Homo sapiens did not evolve.
When there’s been as much carbon dioxide in the air as there already is today—not to mention how much there’s likely to be in 50 or 100 years—the world has been much, much warmer, with seas 70 feet higher than they are today. Why? The planet today is not yet in equilibrium with the warped atmosphere that industrial civilization has so recently created. If CO2 stays at its current levels, much less steadily increases, it will take centuries—even millennia—for the planet to fully find its new footing. The transition will be punishing in the near term and the long term, and when it’s over, Earth will look far different from the one that nursed humanity. This is the grim lesson of paleoclimatology: The planet seems to respond far more aggressively to small provocations than it’s been projected to by many of our models.
To truly appreciate the coming changes to our planet, we need to plumb the history of climate change. So let us take a trip back into deep time, a journey that will begin with the familiar climate of recorded history and end in the feverish, high-CO2 greenhouse of the early age of mammals, 50 million years ago. It is a sobering journey, one that warns of catastrophic surprises that may be in store.
Leave a Reply